
EECS 367 Lab
Git-ing started with Git

Michigan EECS 367 Introduction to Autonomous Robotics | ROB 511 Robot Operating Systems | Fall 2020Michigan EECS 367 Introduction to Autonomous Robotics | ROB 320 Robot Operating Systems

EECS 367 & ROB 320
Interactive Session

Administrative

• Assignment #4: Robot FSM Dance Contest

• Due Friday, March 11, 11:59pm

• Dance Contest-Demo

• Next Wednesday, March 16th

• During Interactive Session

• Not additional feature points

Today’s Topics

• General Course Q&A

• Reviewing KinEval Assignment 4 Stencil

• FSM Walkthrough Q&A

• Extended Office hours

Dance Controller Overview

Features assigned to
all sections

Features assigned to
grad section only

ї��ĂŶĐĞůůĞĚ�ĚƵĞ�ƚŽ��Ks/�-19

KinEval Overview

All code for
assignment 4

KinEval Overview

All code for
assignment 4

kineval_forward_kinematics.js Revisited
kineval_forward_kinematics.js

For each joint, incorporate
.axis and .angle within

forward kinematics. You will
then be able to control joints!

Define global heading and lateral
vectors with respect to global space

kineval_quaternion.js
kineval_quaternion.js

Define quaternion helper functions
ї��ƌĞĂƚĞ�Ă�ũŽŝŶƚ Ɛ͛�ƌŽƚĂƚŝŽŶ�ŵĂƚƌŝǆ�

from any axis-angle pair

Rest of forward
kinematics

Joint frame without control Joint frame with control

joint.axis
(constant)

joint.angle
(dynamic w/ control)

Rest of forward
kinematics

Michigan Robotics 367/320 - autorob.org

Lecture 8 - Axis-angle Rotation and Quaternions

• Inhomogeneous conversion to 3D rotation matrix of

• Rotation matrix to quaternion can also be performed

q = [cos(Θ/2), ux sin(Θ/2), uy sin(Θ/2), uz sin(Θ/2)]

or equivalently, homogeneous conversion

1) form unit quaternion from axis and motor angle

2) convert quaternion to rotation matrix

http://autorob.org

kineval_controls.js
kineval_controls.js

Control is already applied to
all joint.angles and
robot.origin for you

Grad section will need to
enforce joint limits

kineval_servo_control.js
kineval_servo_control.js

Implement a Finite State
Machine for setpoint dance

routine

Implement P controller for
joint control to setpoints

Michigan Robotics 367/320 - autorob.org

PID Control

Error signal:

Control signal:

Current Past Future

Lecture 5 - Motion Control

robot.joints[x].angle

kineval.params.setpoint_target[x]
or

robot.joints[x].servo.p_desired

http://autorob.org

kineval_servo_control.js
kineval_servo_control.js

Implement a Finite State
Machine for setpoint dance

routine

Implement P controller for
joint control to setpoints

FSM Pseudocode

• Identify current setpoint

• Compare current pose to setpoint pose

• If current pose is similar, update setpoint

FSM Pseudocode

• Identify current setpoint

• Iterate over each joint

• If joint’s angle is ‘close’ to setpoint[joint]’s angle

• Continue

• Else

• Return

• Update setpoint index

• Identify current setpoint

• Iterate over each joint

• total_error += difference(joint, setpoint[joint])

• If total_error<threshold

• Update setpoint index

Logic-based Approach Cumulative Sum-based Approach

kineval_servo_control.js
kineval_servo_control.js

Implement a Finite State
Machine for setpoint dance

routine

Implement P controller for
joint control to setpoints

home.html
home.html

Create a cool dance routine by defining
a sequence of joint angle setpoints to
be used by the FSM implementation

Initialize kineval.setpoints and
kineval.params.dance_sequence_index here

Poses for servo can be set and stored
interactively in KinEval using [0-9]

keys and Shift+[0-9]

JSON.stringify(kineval.setpoints)

will output the currently available servo
setpoints to the console as a string

