EECS 367 & ROB 320 Interactive Session

Michigan EECS 367 Introduction to Autonomous Robotics | ROB 320 Robot Operating Systems

Administrative

- Assignment #4: Robot FSM Dance Contest
 - Due Friday, March 11, 11:59pm
- Dance Contest-Demo
 - Next Wednesday, March 16th
 - During Interactive Session
 - Not additional feature points

Today's Topics

- General Course Q&A
- Reviewing KinEval Assignment 4 Stencil
- FSM Walkthrough Q&A
- Extended Office hours

Dance Controller Overview

- Assignment 4: Dance Controller
- Quaternion joint rotation
- Interactive base control
- Pose setpoint controller
- Dance FSM

KinEval Overview

📮 auto	orob / kineval-stencil	
<> Cod	de (!) Issues 1 1 13 Pull requests	➢ Actions ^{□□} Projects ^{□□}
	양 master → 양 1 branch ⓒ 0 tags	
-	ohseejay Merge pull request #3 from c	xt98/master ····
	js	initial commit Fall 2018
	kineval	initial commit Fall 2018
	project_pathplan	Adds refactored stencil files for project 1.
	project_pendularm	add refactor of assignment2, tested with
	robots	initial commit Fall 2018
	tutorial_heapsort	initial commit Fall 2018
	tutorial_js	initial commit Fran 2018
	worlds	initial commit Fall 2018
	LICENSE	add refactor of assignment2, tested with
	README.md	initial commit Fall 2018
	home.html	initial commit Fall 2018

KinEval Overview

Ē

📮 autorob	/ kineval-stencil		⊙ Watch ▾ 5 ☆ Star 9
<> Code	(!) Issues 1 1; Pull requests (.) Actions	III Projects 🖸 Wiki 🕐 Security 🗠 Insights	
	ᢞ master - kineval-stencil / kineval /		Go to file Add file -
	zhezhou1993 Factorize kineval stencil for FK	problems, fix bugs in previous version	70d8e4b 9 days ago 🕚 History
	🗅 kineval.js	initial commit Fall 2018	2 years ago
	kineval_collision.js	initial commit Fall 2018	2 years ago
	kineval_controls.js	initial commit Fall 2018	2 years ago
	kineval_forward_kinematics.js	initial commit Fall 2018	2 years ago
	kineval_inverse_kinematics.js	initial commit Fall 2018	2 years ago
	kineval_matrix.js	Factorize Kineval Stensil for FK problems, fix bugs in previous version	9 days ago
	kineval_quaternion.js	Factorize kineval stencil for Frequences, fix bugs in previou	
	kineval_robot_init.js	Factorize kineval stench for FN gradining	All code tor
	kineval_robot_init_joints.js	Factorize kineval stencil for FK gradining	assignment 4
	kineval_rosbridge.js	initial commit Eau 2018	z yearo ago
	kineval_rrt_connect.js	initial commit Fall 2018	2 years ago
	kineval_servo_control.js	initial commit Fall 2018	2 years ago
	kineval_startingpoint.js	initial commit Fall 2018	2 years ago
	kineval_threejs.js	initial commit Fall 2018	2 years ago
	kineval_userinput.js	initial commit Fall 2018	2 years ago

kineval forward kinematics.js Revisited

S	orward_kinematics.js	eval_	kine		
atics = fu	val. robotForwardKinemat	kir	18 19		
			20		
ildFKTrans	if (typeof kineval.buil		21		
= "forwar	textbar.innerHTML =		22		
	return;		23		
	}		24		
			25		
kineval.b	// STENCIL: implement k		26		
			27		
		}	28		
			29		
code alte	((STENSTLY reference c		20		
starting	and lateral ase	ng	adi	efine global h	efir
F	giobal Space lik		spec		vel
-	//		35		

Define

inction robotForwardKinematics () {

sforms === 'undefined') { d kinematics not implemented";

ouildFKTransforms();

For each joint, incorporate .axis and .angle within forward kinematics. You will then be able to control joints!

ernates recursive traversal over from base, using following functions:

kineval_quaternion.js

kineval_quaternion.js

QUATERNION TRANSFORM ROUTINES ///// STENCIL: reference quaternion code has the following functions: quaternion_from_axisangle quaternion_normalize quaternion_to_rotation_matrix quaternion_multiply 10 // **** Function stencils are provided below, please uncomment and implement them ****// 11 12 // kineval.quaternionFromAxisAngle = function quaternion_from_axisangle(axis,angle) {

Joint frame without control

joint.angle (dynamic w/ control)

joint.axis / (constant)

Define quaternion helper functions \rightarrow Create a joint's rotation matrix from any axis-angle pair

1) form unit quaternion from axis and motor angle

2) convert quaternion to rotation matrix

• Inhomogeneous conversion to 3D rotation matrix of $\mathbf{q} = \begin{bmatrix} q_0 & q_1 & q_2 & q_3 \end{bmatrix}^{t}$

$$\begin{bmatrix} 1 - 2(q_2^2 + q_3^2) & 2(q_1q_2 - q_0q_3) & 2(q_0q_2 + q_1q_3) \\ 2(q_1q_2 + q_0q_3) & 1 - 2(q_1^2 + q_3^2) & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_0q_1 + q_2q_3) & 1 - 2(q_1^2 + q_2^2) \end{bmatrix}$$

or equivalently, homogeneous conversion

$$\begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_0q_2 + q_1q_3) \\ 2(q_1q_2 + q_0q_3) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_0q_1 + q_2q_3) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

 Rotation matrix to quaternion can also be performed ichigan Robotics 367/320 - autorob.org

Lecture 8 - Axis-angle Rotation and Quaternions

 $q = [\cos(\Theta/2), u_x \sin(\Theta/2), u_y \sin(\Theta/2), u_z \sin(\Theta/2)]$

kineval controls.js

kineval controls.js kineval.applyControls = function robot_apply_controls(curRobot) { // includes update of camera position based on base movement // update robot configuration from controls for (x in curRobot.joints) { // update joint angles if ((typeof curRobot.joints[x].type !== 'undefined') || (typeof curRobot.joints[x].type !== 'fixed')) { if (isNaN(curRobot.joints[x].control)) curRobot.joints[x].angle += curRobot.joints[x].control; } // STENCIL: enforce joint limits for prismatic and revolute joints // clear controls back to zero for next timestep curRobot.joints[x].control = 0;

kineval_servo_control.js

kineval_servo_control.js

19	<pre>kineval.setpointDanceSequence = function exec</pre>
20	
21	<pre>// if update not requested, exit routine</pre>
22	<pre>if (!kineval.params.update_pd_dance) retu</pre>
23	
24	<pre>// STENCIL: implement FSM to cycle throug</pre>
25	}
26	
27	<pre>kineval.setpointClockMovement = function exec</pre>
28	
29	<pre>// if update not requested, exit routine</pre>
30	<pre>if (!kineval.params.update_pd_clock) retu</pre>
31	
32	<pre>var curdate = new Date();</pre>
33	<pre>for (x in robot.joints) {</pre>
34	<pre>kineval.params.setpoint_target[x] = c</pre>
35	}
36	}
37	
38	
39	<pre>kineval.robotArmControllerSetpoint = function</pre>
40	
41	<pre>// if update not requested, exit routine</pre>
42	<pre>if ((!kineval.params.update_pd)&&(!kineva</pre>
43	
44	<pre>kineval.params.update_pd = false; // if u</pre>
45	
46	<pre>// STENCIL: implement P servo controller</pre>
47	}
and the second second	

kineval.params.setpoint target[x] Oľ robot.joints[x].servo.p desired

Lecture 5 - Motion Control

Michigan Robotics 367/320 - <u>autorob.org</u>

kineval servo control.js

kineval servo control.js kineval.setpointDanceSequence = function execute_setpoints() { 20 // if update not requested, exit routine if (!kineval.params.update_pd_dance) return; 22 23 // STENCIL: implement FSM to cycle through dance pose setpoints 24 25 26 kineval.setpointClockMovement = function execute_clock() { 28 // if update not requested, exit routine 29 if (!kineval.params.update_pd_clock) return; 30 var curdate = new Date(); 32 for (x in robot.joints) { 33 kineval.params.setpoint_target[x] = curdate.getSeconds()/60*2*Math.PI; 34 35 36 37 38 kineval.robotArmControllerSetpoint = function robot_pd_control () { 39 40 // if update not requested, exit routine 41 if ((!kineval.params.update_pd)&&(!kineval.params.persist_pd)) return; 42 43 44 45 // STENCIL: implement P servo controller over joints 46 47 }

FSM Pseudocode

- Identify current setpoint
- Compare current pose to setpoint pose
 - If current pose is similar, update setpoint

FSM Pseudocode

Logic-based Approach

- Identify current setpoint \bullet
- Iterate over each joint \bullet
 - If joint's angle is 'close' to setpoint[joint]'s angle
 - Continue
 - Else
 - Return
- Update setpoint index \bullet

Cumulative Sum-based Approach

Identify current setpoint \bullet

- Iterate over each joint \bullet
 - total_error += difference(joint, setpoint[joint])

- If total_error<threshold
 - Update setpoint index

kineval_servo_control.js

kineval_servo_control.js

19	kineval.setpointDanceSequence = function exect
20	
21	<pre>// if update not requested, exit routine</pre>
22	<pre>if (!kineval.params.update_pd_dance) retuin </pre>
23	
24	<pre>// STENCIL: implement FSM to cycle through</pre>
25	}
26	
27	<pre>kineval.setpointClockMovement = function exec</pre>
28	
29	<pre>// if update not requested, exit routine</pre>
30	<pre>if (!kineval.params.update_pd_clock) retuin </pre>
31	
32	<pre>var curdate = new Date();</pre>
33	<pre>for (x in robot.joints) {</pre>
34	<pre>kineval.params.setpoint_target[x] = c</pre>
35	}
36	}
37	
38	
39	<pre>kineval.robotArmControllerSetpoint = function</pre>
40	
41	<pre>// if update not requested, exit routine</pre>
42	<pre>if ((!kineval.params.update_pd)&&(!kineval</pre>
43	
44	<pre>kineval.params.update_pd = false; // if up</pre>
45	
46	<pre>// STENCIL: implement P servo controller of</pre>
47	}

home.html

home.html

131	///////////////////////////////////////
132	///// MAIN FUNCTION CALLS
133	///////////////////////////////////////
134	
135	// start KinEval execution once the pa
136	//window.onload = kineval.start;
137	<pre>document.body.onload = kineval.start;</pre>
138	
139	// STUDENT: my_animate is where your
140	<pre>function my_init() {</pre>
141	
142	<pre>kineval.startingPlaceholderInit()</pre>
143	Initialize kine
144	<pre>} kineval.params.da</pre>

Poses for servo can be set and stored **interactively** in KinEval using [0-9] keys and Shift+[0-9]

Create a cool dance routine by defining a sequence of joint angle setpoints to be used by the FSM implementation

age and its resources are loaded

robot's controls and movement are updated over time

; // a quick and dirty JavaScript tutorial val.setpoints and ance_sequence_index here

JSON.stringify(kineval.setpoints) will output the currently available servo setpoints to the console as a string

