Initialization

EECS 367
Intro. to Autonomous Robotics

ME/EECS 567 ROB 510
Robot Modeling and Control

Fall 2019

autorob.org
Agenda

• So, where is my robot?
• Roadmap for autonomous robotics
• Course administrative overview
• Assignment 1 (Path Planning) assigned today, due Sep 18 11:59pm
 • JavaScript/HTML5 and git covered this and next lecture
• Action items: what I need from you now
Is that a real job?
Will robots take my job?
Are you making R2D2?
Like “take over the world” robots?
What kinds of robots to you build?
Can your robot bring me a drink?
Will robots be our friends?
Can I work in your lab?
So, where is my robot?
So, where is my robot?
So, where is my robot?
Mobile Manipulation Robots
How much?
Willow Garage PR2

$400K

$100K

2009

2015

Time

Cost

Fetch
Willow Garage PR2

Cost:
- $400K
- $100K

Time:
- 2002
- 2009
- 2015

Michigan Robotics 367/510/567 - autorob.org
“Do this task for me”
Can we make your world programmable?
Use \(x \) robot to perform task \(y \) in \(z \) environment
Teleoperation

Pick-and-Place

NASA Robonaut

Willow Garage PR2

Fetch

Your robot

Cost

$1.5M

$400K

$100K

$40K

Time

2001

2009

2015

2020

Taskable autonomy
Teleoperation

NASA Robonaut
NASA Robonaut 2 on the International Space Station
Wearable wireless motion capture for robot teleoperation

[Miller, Jenkins, et al., 2004, “Motion Capture from Inertial Sensing for Untethered Humanoid Teleoperation”]
The 3Ds: Dirty, Dull, and Dangerous

“Autonomous” Driving

Infrastructure inspection

Nuclear cleanup

https://www.shadowrobot.com/blog/robots-saving-humans-from-dangerous-jobs/
https://techcrunch.com/2018/06/05/remote-control-driverless-car-startup-partners-with-vehicle-manufacturers/
Autonomous Robotics in 3 words

Sense.
Plan.
Act.
Autonomous Robotics in 3 words

Sense.
Perceive a model of the current world state.

Plan.
Search over actions towards a goal state.

Act.
Execute actions through forces at robot’s motors
Color+Depth Camera

Laser Rangefinder
Color+Depth Camera

Laser Rangefinder
Jasmine Liu et al.
Michigan Next Generation Vehicle (Olson, Eustice, et al.)
Michigan Next Generation Vehicle (Olson et al.)
Color+Depth Camera

Laser Rangefinder
Object Manipulation

Willow Garage
Point Cloud Processing (briefly)

• For every point:

 • compute nearest neighbors

 • compute principal components in neighborhood
 \(\text{eig}(\text{cov}(\text{nbhd}(::1:3))) \)

 • surface normal is eigenvector for smallest eigenvalue

 • Cluster points based on direction similarity of normal
Object Manipulation

Willow Garage
[Sui, Jenkins, et al. IROS 2017]
Taskable Autonomy

"Pick-and-Place" Autonomy

Teleoperation

NASA Robonaut

Willow Garage PR2

Fetch

Cost

$1.5M

$400K

$100K

$40K

Your robot

2001

2009

2015

2020

Time

Cost

Time

NASA Robonaut

Willow Garage PR2

Fetch

Taskable Autonomy
Taskable Manipulation

Initial Scene → Goal Scene

“put small objects in bin”
“put small objects in bin”

[Sui, Xiang, Jenkins, Desingh, IJRR 2017]
Semantic Robot Programming

[Zeng, Jenkins, et al. ICRA 2018]

Enable natural user programming of robots by demonstration of intended goal scenes.
Agenda

• So, where is my robot?

• Roadmap for autonomous robotics

• **Course administrative overview**

• Assignment 1 (Path Planning) assigned today

 • JavaScript/HTML5 and git covered this and next lecture
Course Staff

• Instructor: Chad Jenkins (ocj)

 • Office hours (Beyster 3644)
 • Monday 3-5pm, Tuesday 1-3pm

• GSI: Anthony Opipari (topipari)

 • Office hours (Beyster 1637 A)
 • Tuesday 1-3pm, Wednesday 3-5pm
Administrivia

• Lecture time/place: MW 1:30-2:40pm MMT, EECS 1500
• 367 Lab Section: F 2:30-3:20 MMT, EECS 1500
• Website: http://autorob.org
• Discussion channel: https://autorob.slack.com/
 • This might switch to discord, mattermost, or IRC
• Office hours queue: https://oh.eecs.umich.edu/courses/eecs567
AutoRob
Introduction to Autonomous Robotics
Michigan EECS 367

Robot Kinematics and Dynamics
Michigan ME 567 EECS 567 ROB 510

Fall 2019
Course Schedule (tentative and subject to change)

Note: Assignment descriptions will have updated assignment due dates. Assignment due dates listed in the schedule are merely a guide.

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Reading</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sep 4</td>
<td>Initialization: Course overview, Robotics roadmap, Path planning quick start</td>
<td>Spong Ch.1</td>
<td>Setup git repository</td>
</tr>
<tr>
<td></td>
<td>What is a robot? Brief history and definitions for robotics</td>
<td>Corks Ch.1</td>
<td></td>
</tr>
<tr>
<td>Sep 6</td>
<td>367 Lab: Git-ing started with git, JavaScript, and KinEval</td>
<td></td>
<td>Off: Path Planning</td>
</tr>
<tr>
<td>Week 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 9</td>
<td>Path Planning: DFS, BFS, A-star, Greedy best first</td>
<td>Wikipedia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Addendum: DFS example</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 11</td>
<td>JavaScript and git tutorial: Heap sort example</td>
<td>Crockford, HTML Sandbox, hello.html (source), JavaScript by Example (source), hello_anim (source), hello_anim_text (source)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Addendum: coding workflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 13</td>
<td>367 Lab: search_canvas.html code overview</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sep 16</td>
<td>Course meeting cancelled - off-site meeting</td>
<td></td>
<td>Due: Path Planning</td>
</tr>
</tbody>
</table>
#w16

April 11th

Configurations are n-dimensional vectors for the mr2 robot, 2-dimensional vectors for the canvas example, and 18-dimensional vectors for the Fetch robot.

@ocj You are correct to be concerned about the relative weighting of dimensions for vectors in configuration space. Each dimension may need to be weighted based on the properties of that degree of freedom, such as its units, extents, scaling, etc. Scaling each dimension s_i by a weight w_i converts your computation of distance between two configurations q and q' to this form:

$$d(q, q') = \sqrt{\sum w_i (q_i - q'_i)^2}$$

@ocj uploaded an image:

```
Pasted image at 2016-04-11, 7:22 PM
```

`d(q, q') = \sqrt{\sum w_i (q_i - q'_i)^2}`

Okay, thanks
Robotics 367/510/567
Office Hours (Beyer 3rd floor, 3rd floor atrium)

Instructor's message
Priority given to questions about project concepts. Lower priority given to questions about regrading. (I am working on it.)

Instructor Queue Management
- Queue Pop
- Go Offline
- Take All Instructors Offline
- Empty Queue

Notifications
eecslhelp can notify you when a request comes into an empty queue.
- Get notified
- No thanks

Requests 0

Michigan Robotics 367/510/567 - autorob.org
Course Structure

• Autonomous robot modeling and control

• Objective: Give you the computational skills (and code) to model and control any mobile manipulator

• Project-focused class

• 7 individual projects: from single joint control up to articulated motion planning

• Computing-friendly introduction to robotics: projects in JavaScript
Course Textbook

- Robot Modeling and Control (Spong, Hutchinson, Vidyasagar)
- Alternative: Robotics, Vision, and Control (Corke)
- Suggested but unsupported: Modern Robotics (Lynch and Park)
- In-depth coverage of concepts and math contained in textbooks
- Additional handouts and links will appear on the course website
Optional reading
Projects

- Projects implemented in JavaScript/HTML5 using KinEval stencil
 - Projects submitted and tracked through git (gitlab|github|bitbucket)
 - Instructor (ohseejay|ocj) needs admin access
- 7 projects
 - 6 Programming, 1 Written/Oral
- Grading: projects are broken down into features that are “checked”
 - points are earned through successful implementation of features
Projects

- **Path Planning** A-star search in 2D world
- **Pendularm** physical simulation and PID control of 1 DoF robot
- **Forward Kinematics** convert robot configuration to 3D space
- **Dance Contest** control of robot joints to do a dance
- **Inverse Kinematics** control gripper of a robot to reach a point in 3D
- **Motion Planning** collision-free planning over robot configurations
- **Best Use of Robotics** what will you do with all of this power?
• Path Planning

• FK/IK

• Pendularm

• RRT
Will you work with a real robot?
Will you work with a real robot?

Yes, at least once using rosbridge/ROS
Grading Summary

EECS 367: Introduction to Autonomous Robotics

• 7 projects (12 points each)
• 5 quizzes (4 points each)

A: 93+ points
B: 83+ points
C: 73+ points

ME/EECS 567 ROB 510: Robot Kinematics and Dynamics

• 7 projects (18 points each)
• 5 quizzes (4 points each)
• Advanced features (4 points)

A: 135+ points
B: 120+ points
C: 105+ points
gitlab.eecs.umich.edu/ocj
Collaboration Policy

- All work submitted must be your own
- All code submitted must comply with Michigan Honor License
- No code can be communicated, including verbally
 - Explicit use of external sources must be clearly cited
 - Repositories must be private for proper compliance
- Free flow of discussion and ideas is encouraged
Michigan Honor License

- 3-Clause BSD License + Michigan Honor Code + proper citation
- Assert the compliance of your code with the MHL
 - Append your name to the end of LICENSE in your repository
- Submitted code will not be graded without asserting LICENSE
Late Policy

• Projects submitted after deadline may not be graded (zero credit)

• If a late submission is allowed, it can receive at most
 • 80% credit if pushed within 2 weeks of the deadline
 • 60% credit if pushed within 4 weeks of the deadline
 • 50% credit if pushed anytime before final grading
Regrading policy

• Projects features are graded with:
 • “CHECK” (sufficiently completed)
 • “DUE” (insufficiently completed)
 • “PENDING” (not due yet)

• A project feature can be regraded for partial credit for at most
 • 80% credit if pushed within 2 weeks of the last returned grading
 • 60% credit if pushed anytime before final grading
sdnt Updated motion planning to disallow rotations about x-z axis

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>js</td>
<td>Fall 2016 release</td>
<td>a year ago</td>
</tr>
<tr>
<td>kineval</td>
<td>Disallow rotations about x-z axis. Fixed return val. Can now trace path</td>
<td>8 months ago</td>
</tr>
<tr>
<td>project_pathplan</td>
<td>2d rt-connect complete using drawHighlightPath. Had to change give...</td>
<td>8 months ago</td>
</tr>
<tr>
<td>project_pendularm</td>
<td>pendulum seems complete</td>
<td>11 months ago</td>
</tr>
<tr>
<td>robots</td>
<td>Fall 2016 release</td>
<td>a year ago</td>
</tr>
<tr>
<td>tutorial_heapsort</td>
<td>Added heap increase key function to heap.js to help with A* algorithm</td>
<td>10 months ago</td>
</tr>
<tr>
<td>tutorial_js</td>
<td>Playing with Javascript samples</td>
<td>a year ago</td>
</tr>
<tr>
<td>worlds</td>
<td>Deleted all source_* .js files and added honor.txt</td>
<td>10 months ago</td>
</tr>
<tr>
<td>.gitignore</td>
<td>Implemented and tested matrix multiply and matrix transpose</td>
<td>9 months ago</td>
</tr>
<tr>
<td>README.md</td>
<td>Fall 2016 release</td>
<td>a year ago</td>
</tr>
<tr>
<td>grading.txt</td>
<td>added grading for Final grading</td>
<td>9 months ago</td>
</tr>
<tr>
<td>home.html</td>
<td>Fall 2016 release</td>
<td>a year ago</td>
</tr>
</tbody>
</table>
53: student name

EECS 398-084 F16

Assignment 1 feature 1 (4.00/4): PathPlan_Heap: CHECK
comment: good work

Assignment 1 feature 2 (8.00/8): PathPlan_AStar: CHECK
comment: good work

Assignment 2 feature 3 (4.00/4): Pendularm_Euler: CHECK
error: Euler integrator is incorrect
comment: why is this integrator stable?
error: integration of dynamics is incorrect
comment: double check computation of pendulum acceleration
regrade: servo converges after several oscillations, borderline control performance

Assignment 2 feature 4 (4.00/4): Pendularm_VelocityVerlet: CHECK
error: integration of dynamics is incorrect
comment: double check computation of pendulum acceleration
regrade: working

Assignment 2 feature 5 (4.00/4): Pendularm_PID: CHECK
error: integration of dynamics is incorrect
comment: modulo correction is not needed

Assignment 3 feature 6 (2.00/2): FK_MatrixRoutines: CHECK
KinEval code stencil
Maybe also?
Maybe also?
KinEval code stencil

• Code stencil for AutoRob projects in 3D
• Uses threejs 3D rendering library and WebGL
• URDF-like robot description
• Usable, but not perfect, camera and UI controls
• AABB collision detection provided for planning
• Warning: professor-level coding
Let’s start with base navigation

(Lecture 2 foreshadowing)
Let’s start with base navigation

How to get from Location A to Location B?
Project 1: 2D Path Planning

• A-star algorithm for search in a given 2D world

• Implement in JavaScript/HTML5

• Heap data structure for priority queue

• Grad: DFS, BFS, Greedy

• Submit through your git repository
Dijkstra shortest path algorithm

all nodes ← \{dist_{\text{start}} ← \text{infinity}, \text{parent}_{\text{start}} ← \text{none}, \text{visited}_{\text{start}} ← \text{false}\}

start_node ← \{dist_{\text{start}} ← 0, \text{parent}_{\text{start}} ← \text{none}, \text{visited}_{\text{start}} ← \text{true}\}

visit_queue ← start_node

while visit_queue != empty && current_node != goal

 cur_node ← min_distance(visit_queue)
 visited_{cur_node} ← true

 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if dist_{nbr} > dist_{cur_node} + distance(nbr, cur_node)
 parent_{nbr} ← current_node
 dist_{nbr} ← dist_{cur_node} + distance(nbr, cur_node)
 end if
 end for loop

end while loop

output ← parent, distance
A-star shortest path algorithm

all nodes ← \{\text{dist}_{\text{start}} \leftarrow \infty, \text{parent}_{\text{start}} \leftarrow \text{none}, \text{visited}_{\text{start}} \leftarrow \text{false}\}

\text{start_node} ← \{\text{dist}_{\text{start}} \leftarrow 0, \text{parent}_{\text{start}} \leftarrow \text{none}, \text{visited}_{\text{start}} \leftarrow \text{true}\}

\text{visit_queue} ← \text{start_node}

\text{while} (\text{visit_queue} \neq \text{empty}) \&\& \text{current_node} \neq \text{goal}

\text{dequeue}: \text{cur_node} ← \text{f_score(visit_queue)}

\text{visited}_{\text{cur_node}} ← \text{true}

\text{for} each \text{nbr} in \text{not_visited(adjacent(cur_node))}

\text{enqueue: nbr to visit_queue}

\text{if} \text{dist}_{\text{nbr}} > \text{dist}_{\text{cur_node}} + \text{distance(nbr,cur_node)}

\text{parent}_{\text{nbr}} ← \text{current_node}

\text{dist}_{\text{nbr}} ← \text{dist}_{\text{cur_node}} + \text{distance(nbr,cur_node)}

\text{f_score} ← \text{distance}_{\text{nbr}} + \text{line_distance}_{\text{nbr,goal}}

\text{end if}

\text{end for loop}

\text{end while loop}

\text{output} ← \text{parent, distance}

implement min binary heap for priority queue
Heaps

A heap is a tree-based data structure satisfying the heap property: every element is greater (or less) than its children.

max heap

min heap
Heap operations: Insert

1) add new element to end of tree

2) swap with parent

3) until heaped, do (2)
Heap operations: Extract

1) extract root element

2) put last element at root

3) swap with smaller child

4) until heaped, do (3)
<!DOCTYPE html>
<html>
<head>
	<title>Heap Sort by Chad Jenkins</title>
</head>
<body onload=startMeUp()>
	My Heap Sort
	<canvas width=900 height=200 id="myCanvas"></canvas>
	<div id="output">hello world</div>
</body>
<script>
function startMeUp() {
 // executable code to perform heapsort; will depend on heap.js ...
}
</script>
git basics

• Create a git repository from gitlab, github, or bitbucket website

• Install git on your machine

 • OSX: https://code.google.com/p/git-osx-installer/
git basics

- create a local copy of a repository: `git clone <repo url>`
- add files to a repository: `git add <file listing>`
- commit changes to local repository: `git commit -a -m "<msg>"`
- push local changes to a remote repository: `git push`
- pull remote changes to a local repository: `git fetch` or `git pull`
- create a code branch in a repository: `git branch <branch name>`
- checkout a code branch from a repository: `git branch <branch name>`
- merge branches in a repository:
 - `git checkout <branch name>`
 - `git merge <other branch name>`
Highly recommended tutorial

http://learngitbranching.js.org/
Can I enroll in this class?

• Most likely! Probably yes!

• We will try to enroll all who want to take the course

• Enrollment issues can be discussed at office hours or lab section
 • Friday 2:30-3:30pm in EECS 1500
 • Monday 3-5pm and Tuesday 1-3pm in Beyster 3644
What I need from you now

- Accept invitation to the course discussion channel (coming tonight)
 - https://autorob.slack.com
- Install git and setup your working environment
 - create a git repository: https://gitlab.eecs.umich.edu/
 - ensure you can clone, commit, and push files to your repository
- Over the discussion channel, send me:
 - informal introduction confirming your name, email, and enrollment
 - pointer to your git repo for the course
What I need from you soon

- Get started on Assignment 1 (Path Planning)
 - Clone kineval-stencil repository (release this weekend)
 - Study examples in tutorial_js subdirectory
 - Complete tutorial_heapsort (noted with “STENCIL” in files)
 - Complete project_pathplan (concepts covered next week)
What is a robot?

(be sure to ready over Lecture 0)