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Administrative
Assignment 5 released

Due date is now Wednesday, November 18 at 11:59pm

Pull stencil update from upstream!

Quiz 4 now on Wednesday, November 18

Robotics Pathways speakers



Why is robotics so hard?



What is ROS?
“The Robot Operating System (ROS) is a flexible framework for writing 
robot software. It is a collection of tools, libraries, and conventions that 
aim to simplify the task of creating complex and robust robot behavior 
across a wide variety of robotic platforms.” – ros.org/about-ros

ROS is a software ecosystem that gives you access to a lot of great tools 
and libraries if you play by its rules. - me



Middleware
Core ROS feature is its message passing interface and related tools
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Tools, Libraries, Conventions
Tools

Software and package management tools (roslaunch, rosdep, catkin)
Robotics tools (Gazebo, RViz, MoveIt!)

Libraries
ROS libraries (roscpp)
Utilities (tf2)

Conventions
Standard message types (std_msgs, geometry_msgs)
Robot description standard (URDF)



Today: ROS Basics
1. Working with ROS nodes, topics, and messages

2. How to write and build your own ROS node

3. Publishers and subscribers

4. Demo of simple publisher/subscriber nodes

5. ROS tools to look into
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Installing ROS

To work with the Fetch, install ROS 
Melodic

For best results, use Ubuntu 18.04
Save yourself a lot of frustration!

Installation tutorials on wiki.ros.org

Install relevant Fetch packages
ros-melodic-fetch-ros

ros-melodic-fetch-gazebo



ROS Nodes
A ROS node is essentially a running instance of an executable from a ROS 
package

To see running nodes: $ rosnode list

ROS nodes use ROS client library to communicate with other nodes
In C++: roscpp

In Python: rospy

ROS nodes can…
Publish a ROS topic, subscribe to a ROS topic

Provide a ROS service, use a ROS service



ROS Topics and Messages
A ROS topic is a data channel through which only one type of data can be 
sent

Data is contained in messages

Each topic has a singe associated message type

A publisher node sends messages on a topic; a subscriber node receives 
them

Some useful commands for working with topics and messages include:
List current topics: $ rostopic list

Display messages on a topic: $ rostopic echo /topic_name

Display message type structure: $ rosmsg show msg_pkg/msg_name

See publisher/subscriber graph: $ rosrun rqt_graph rqt_graph
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ROS Build System
To easily write ROS nodes and compile them against the necessary 
dependencies, use catkin

Build system for ROS

Extension of cmake, works similarly

A catkin package must have package.xml and CMakeLists.txt and be 
located in its own folder within a catkin workspace

Recommended: Install catkin_tools package for improved command-line 
interface…

Create a catkin workspace in current folder: $ catkin init

Build all packages in your workspace: $ catkin build



Development Environment Setup
$ source /opt/ros/melodic/setup.bash

Can put this line in your .bashrc or similar if frequently developing ROS packages

$ mkdir –p ~/catkin_ws/src

All packages need to be located in src subdirectory within workspace

$ cd ~/catkin_ws

$ catkin init

$ catkin build

Builds all packages in workspace by default

$ source ~/catkin_ws/devel/setup.bash

Can put this line in your .bashrc or similar if frequently using packages from this workspace

* Assumes you have already installed ROS



Creating A Package
$ cd ~/catkin_ws/src

Must create package within src subdirectory

$ catkin create pkg autorob_tutorial

Should now have autorob_tutorial directory with CMakeLists.txt and package.xml files

$ cd ~/autorob_tutorial

$ mkdir scripts

$ cd scripts

We will write example node in Python, so our code goes in the scripts subdirectory



Demo Code



Python Nodes

CMakeLists.txt

$ rosrun autorob_tutorial simple_subscriber.py
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Publish / Subscribe
A publisher sends messages on a topic

Does some processing and publishes messages as output

A subscriber receives messages from a topic
Takes the messages as input for processing

Requires a designated callback function to respond to messages

If a response or action is required, use a service instead



Simple Subscriber
simple_subscriber.py



Simple Publisher
simple_publisher.py
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Gazebo Simulation

$ roslaunch fetch_gazebo playground.launch



Demo

$ roslaunch autorob_tutorial fetch_controller.py
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RViz

$ rosrun rviz rviz

robot model

point cloud



MoveIt!



Robot Web Tools



How to Learn More

wiki.ros.org/ROS/Tutorials


