
EECS 367 Lab
ROS Tutorial

Michigan EECS 367 Introduction to Autonomous Robotics | ROB 511 Robot Operating Systems | Fall 2020

Administrative
Assignment 5 released

Due date is now Wednesday, November 18 at 11:59pm

Pull stencil update from upstream!

Quiz 4 now on Wednesday, November 18

Robotics Pathways speakers

Why is robotics so hard?

What is ROS?
“The Robot Operating System (ROS) is a flexible framework for writing
robot software. It is a collection of tools, libraries, and conventions that
aim to simplify the task of creating complex and robust robot behavior
across a wide variety of robotic platforms.” – ros.org/about-ros

ROS is a software ecosystem that gives you access to a lot of great tools
and libraries if you play by its rules. - me

Middleware
Core ROS feature is its message passing interface and related tools

Image
publisher

Laser scan
publisher

Servo
controller

Object
recognition

Motion
planning

Task
planning

RGB image

Laser scan

Velocity
command

On the robot On your computer

Detected
objects

Motion target

node

topic

Tools, Libraries, Conventions
Tools

Software and package management tools (roslaunch, rosdep, catkin)
Robotics tools (Gazebo, RViz, MoveIt!)

Libraries
ROS libraries (roscpp)
Utilities (tf2)

Conventions
Standard message types (std_msgs, geometry_msgs)
Robot description standard (URDF)

Today: ROS Basics
1. Working with ROS nodes, topics, and messages

2. How to write and build your own ROS node

3. Publishers and subscribers

4. Demo of simple publisher/subscriber nodes

5. ROS tools to look into

Today: ROS Basics
1. Working with ROS nodes, topics, and messages

2. How to write and build your own ROS node

3. Publishers and subscribers

4. Demo of simple publisher/subscriber nodes

5. ROS tools to look into

Installing ROS

To work with the Fetch, install ROS
Melodic

For best results, use Ubuntu 18.04
Save yourself a lot of frustration!

Installation tutorials on wiki.ros.org

Install relevant Fetch packages
ros-melodic-fetch-ros

ros-melodic-fetch-gazebo

ROS Nodes
A ROS node is essentially a running instance of an executable from a ROS
package

To see running nodes: $ rosnode list

ROS nodes use ROS client library to communicate with other nodes
In C++: roscpp

In Python: rospy

ROS nodes can…
Publish a ROS topic, subscribe to a ROS topic

Provide a ROS service, use a ROS service

ROS Topics and Messages
A ROS topic is a data channel through which only one type of data can be
sent

Data is contained in messages

Each topic has a singe associated message type

A publisher node sends messages on a topic; a subscriber node receives
them

Some useful commands for working with topics and messages include:
List current topics: $ rostopic list

Display messages on a topic: $ rostopic echo /topic_name

Display message type structure: $ rosmsg show msg_pkg/msg_name

See publisher/subscriber graph: $ rosrun rqt_graph rqt_graph

Today: ROS Basics
1. Working with ROS nodes, topics, and messages

2. How to write and build your own ROS node

3. Publishers and subscribers

4. Demo of simple publisher/subscriber nodes

5. ROS tools to look into

ROS Build System
To easily write ROS nodes and compile them against the necessary
dependencies, use catkin

Build system for ROS

Extension of cmake, works similarly

A catkin package must have package.xml and CMakeLists.txt and be
located in its own folder within a catkin workspace

Recommended: Install catkin_tools package for improved command-line
interface…

Create a catkin workspace in current folder: $ catkin init

Build all packages in your workspace: $ catkin build

Development Environment Setup
$ source /opt/ros/melodic/setup.bash

Can put this line in your .bashrc or similar if frequently developing ROS packages

$ mkdir –p ~/catkin_ws/src

All packages need to be located in src subdirectory within workspace

$ cd ~/catkin_ws

$ catkin init

$ catkin build

Builds all packages in workspace by default

$ source ~/catkin_ws/devel/setup.bash

Can put this line in your .bashrc or similar if frequently using packages from this workspace

* Assumes you have already installed ROS

Creating A Package
$ cd ~/catkin_ws/src

Must create package within src subdirectory

$ catkin create pkg autorob_tutorial

Should now have autorob_tutorial directory with CMakeLists.txt and package.xml files

$ cd ~/autorob_tutorial

$ mkdir scripts

$ cd scripts

We will write example node in Python, so our code goes in the scripts subdirectory

Demo Code

Python Nodes

CMakeLists.txt

$ rosrun autorob_tutorial simple_subscriber.py

Today: ROS Basics
1. Working with ROS nodes, topics, and messages

2. How to write and build your own ROS node

3. Publishers and subscribers

4. Demo of simple publisher/subscriber nodes

5. ROS tools to look into

Publish / Subscribe
A publisher sends messages on a topic

Does some processing and publishes messages as output

A subscriber receives messages from a topic
Takes the messages as input for processing

Requires a designated callback function to respond to messages

If a response or action is required, use a service instead

Simple Subscriber
simple_subscriber.py

Simple Publisher
simple_publisher.py

Today: ROS Basics
1. Working with ROS nodes, topics, and messages

2. How to write and build your own ROS node

3. Publishers and subscribers

4. Demo of simple publisher/subscriber nodes

5. ROS tools to look into

Gazebo Simulation

$ roslaunch fetch_gazebo playground.launch

Demo

$ roslaunch autorob_tutorial fetch_controller.py

Laser scan
publisher

Servo
controller

Fetch
controller

/base_scan

/cmd_vel

Today: ROS Basics
1. Working with ROS nodes, topics, and messages

2. How to write and build your own ROS node

3. Publishers and subscribers

4. Demo of simple publisher/subscriber nodes

5. ROS tools to look into

RViz

$ rosrun rviz rviz

robot model

point cloud

MoveIt!

Robot Web Tools

How to Learn More

wiki.ros.org/ROS/Tutorials

