EECS 367 Lab:
KinEval IK Control Flow and Parameters
Lab Takeaways

1) **KINEVAL Overview**

2) **KINEVAL Walkthrough**

How to start assignment 5
Forward Kinematics Overview

<table>
<thead>
<tr>
<th>Assignment 5: Inverse Kinematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 All Manipulator Jacobian</td>
</tr>
<tr>
<td>3 All Gradient descent with Jacobian transpose</td>
</tr>
<tr>
<td>3 All Jacobian pseudoinverse</td>
</tr>
<tr>
<td>6 Grad Euler angle conversion</td>
</tr>
</tbody>
</table>

- **Features assigned to all sections**
- **Features assigned to graduate sections**
KinEval Overview

All code for assignment 5
Implement `iterateIK()` such that each joint along the endeffector path results with an update to its .control term.
KinEval IK Parameters

• iterate_inverse_kinematics(...)
 • eneefector_target_world
 • Target pose of end effector for IK, .position and .orientation
 • eneefector_joint
 • String name of joint connected to end effector
 • eneefector_position_local
 • Position of end effector with respect to local frame

• kineval.params.ik_steplength
 • Size of step to take along configuration gradient when updating control

• kineval.params.ik_pseudoinverse
 • Boolean flag denoting which method to use (Jacobian transpose or pseudo inverse)
Performance Validation

- `kineval.randomizeIKtrial()`
 - Source code will be provided in assignment slack channel
 - Grad-extension points for reaching at least 100 targets in 60 seconds

- Inverse Kinematics will react in realtime
 - IK will account for manual adjustments to robot base or joint angles
 - Also for any modification to end effector target

Base Controls

- Q
- W
- E
- A
- S
- D

End Effector Target Controls

- R
- F

IK Toggle

- P
State

$\Delta x_n = x_d - x_n$

$x_n \rightarrow x_d$

$\Delta q_n = J(q_n)^{-1} \Delta x_n$

$q_{n+1} = q_n + \gamma \Delta q_n$

O_{world}

$x_d \sim \text{endeffector_target_world}$

$q_n \sim \text{robot_joints}$

$p^{x_n} \sim \text{endeffector_position_local}$

$x_n = T^O_{x_n} p^{x_n}$

$\gamma \sim \text{kineval_params_ik_steplength}$

KinEval Variables