
Michigan Robotics 367/320 - autorob.org

Path planning
the best way to get from A to B

EECS 367

Intro. to Autonomous Robotics

ROB 320

Robot Operating Systems

Winter 2022

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CMDragons

RoboCup Small

2006
https://youtu.be/-Y4H3Sox_4I

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CMDragons

RoboCup Small

2006
https://youtu.be/-Y4H3Sox_4I

http://autorob.org

Michigan Robotics 367/320 - autorob.orgCMDragons - http://www.cs.cmu.edu/~robosoccer/small/

http://autorob.org

Michigan Robotics 367/320 - autorob.org
CMDragons 2015 Pass-ahead Goal

http://autorob.org

Michigan Robotics 367/320 - autorob.org
CMDragons 2015 slow-motion multi-pass goal

http://autorob.org

Michigan Robotics 367/320 - autorob.org
CMDragons 2015 slow-motion multi-pass goal

http://autorob.org

Michigan Robotics 367/320 - autorob.org

http://autorob.org

Michigan Robotics 367/320 - autorob.orghttp://www.cs.cmu.edu/~coral/projects/cobot/

http://autorob.org

Michigan Robotics 367/320 - autorob.orghttp://www.cs.cmu.edu/~coral/projects/cobot/

over 1,000km navigated
around CMU

https://www.joydeepb.com/research.html

http://autorob.org

Michigan Robotics 367/320 - autorob.orghttps://www.joydeepb.com/research.html

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Path Planning
Project 1:

2D Path Planning
• A-star algorithm for search

in a given 2D world

• Implement in JavaScript/
HTML5

• Heap data structure for
priority queue

• Submit through your git
repository

Start

Goal

http://autorob.org

Michigan Robotics 367/320 - autorob.org

• The robot knows:

• Localization: where it is now

• Goal: where it needs to go

• Map: where it will hit something

• Infer:

• Path: Collision-free sequence
of locations to follow to goal

Start

Goal

Path Planning

http://autorob.org

Michigan Robotics 367/320 - autorob.orgLocalization and Mapping - Alphonsus Adu-Bredu - https://youtu.be/wH0QhWgtmuA

http://autorob.org
https://youtu.be/wH0QhWgtmuA

Michigan Robotics 367/320 - autorob.orgAutonomous Navigation - Alphonsus Adu-Bredu - https://youtu.be/wH0QhWgtmuA

http://autorob.org
https://youtu.be/wH0QhWgtmuA

Michigan Robotics 367/320 - autorob.org

How do we get from A to B?

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Going back to robot soccer…

http://autorob.org

Michigan Robotics 367/320 - autorob.orgBrown CS148 Promotional Video 2009 - https://youtu.be/bsvUQ5Kp2Q4

http://autorob.org
https://youtu.be/bsvUQ5Kp2Q4

Michigan Robotics 367/320 - autorob.org

youtube.com/watch?v=88zR6IC7S0g

2007-10: SOCCER WITH IROBOT CREATE

CS1480 – Assignment 3 Path Planning

Figure 3: Illustrations of the (top) goal scoring and (bottom) navigation challenges.

5

2007 - AR Tags for overhead localization

2007 - Mini ITX 2009 - Asus EEE

http://autorob.org
http://www.youtube.com/watch?v=88zR6IC7S0g

Michigan Robotics 367/320 - autorob.org

http://autorob.org

Michigan Robotics 367/320 - autorob.org

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Consider all possible poses as uniformly distributed array of cells in a graph

start

goal

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Consider all possible poses as uniformly distributed array of cells in a graph

Edges connect adjacent cells, weighted by distance

start

goal

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Consider all possible poses as uniformly distributed array of cells in a graph

Edges connect adjacent cells, weighted by distance

Cells are invalid where its associated robot pose results in a collision

start

goal

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Consider all possible poses as uniformly distributed array of cells in a graph

Edges connect adjacent cells, weighted by distance

Cells are invalid where its associated robot pose results in a collision

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

How to find a valid path in this graph?

start

goal

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Approaches to motion planning
• Bug algorithms: Bug[0-2], Tangent Bug

• Graph Search (fixed graph)

• Depth-first, Breadth-first, Dijkstra, A-star, Greedy best-first

• Sampling-based Search (build graph):

• Probabilistic Road Maps, Rapidly-exploring Random Trees

• Optimization (local search):

• Gradient descent, potential fields, Wavefront

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Consider a simple search graph

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Consider a simple search graph

start

goal
Consider each possible robot pose as a
node Vi in a graph G(V,E)

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Consider each possible robot pose as a
node Vi in a graph G(V,E)

Graph edges E connect poses that can be
reliably moved between without collision

Consider a simple search graph

start

goal

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Consider each possible robot pose as a
node Vi in a graph G(V,E)

Graph edges E connect poses that can be
reliably moved between without collision

Edges have a cost for traversal

Consider a simple search graph

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Consider each possible robot pose as a
node Vi in a graph G(V,E)

Graph edges E connect poses that can be
reliably moved between without collision

Edges have a cost for traversal

Each node maintains the distance
traveled from start as a scalar cost

Consider a simple search graph

start

goal

∞

∞

∞

∞
∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

∞

0

http://autorob.org

Michigan Robotics 367/320 - autorob.org

9

10
0

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

10

start

goal

0

6

5

7

5

6

9

10
7

10

Which route is best to optimize distance
traveled from start?

Which parent node should be used to
specify route between goal and start?

Consider a simple search graph
Consider each possible robot pose as a
node Vi in a graph G(V,E)

Graph edges E connect poses that can be
reliably moved between without collision

Edges have a cost for traversal

Each node maintains the distance
traveled from start as a scalar cost

Each node has a parent node that
specifies its route to the start node start

goal

∞

∞

∞

∞
0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

∞

0

0+5

5+1

6+3

5+2
7+3

6+4

http://autorob.org

Michigan Robotics 367/320 - autorob.org

9

10
0

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

10

start

goal

0

6

5

7

Path Planning as Graph Search

Which route is best to optimize distance
traveled from start?

Which parent node should be used to
specify route between goal and start?

We will use a single algorithm template
for our graph search computation

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Depth-first search
intuition and walkthrough

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Goal
location

Start
location

Depth-first search

Start pose of the robot is a 2D vector qinit and
the goal pose is qgoal in world coordinates

qinit

qgoal

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

Assume G is a 2D array of square cells with
• row and column indices i,j
• ϵ-length sides
• 2D center location (in world coordinates)

qinit

qgoal

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

What happens when the robot pose is
not directly on the cell center?

http://autorob.org

Michigan Robotics 367/320 - autorob.org

x

Graph Accessibility

What happens when the robot pose is
not directly on the cell center?

http://autorob.org

Michigan Robotics 367/320 - autorob.org

x

q

Graph Accessibility

A graph node Gi,j represents a region of
space contained by its cell

Start node: the robot accesses graph G
at the cell that contains location qinit

Goal node: the robot departs graph G at
the cell that contains location qgoal

ϵ/2

ϵ/2

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Goal node

Start node

Depth-first search

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Goal node

Start node

Depth-first search

Start node is “visited” first ;
it is assigned zero distance and no parent

0

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Goal node

Start node

Depth-first search

Add neighbor nodes to “visit list”

0

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Goal
location

Start
location

Depth-first search

Add neighbor nodes to “visit list”

2 1

note the order which nodes are added
(ESWN for this example)

0

3
2

1
4 3

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

3

1

For each neighbor:
if the currently visited node becomes the parent,

will the path distance back to start be shorter?
if yes, store this parent and distance at the neighbor node

1 1

1

0∞ ∞

∞

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

3

1

assuming distance ϵ = 1
between node locations ϵ

ϵ

For each neighbor:
if the currently visited node becomes the parent,

will the path distance back to start be shorter?
if yes, store this parent and distance at the neighbor node

∞ ∞

∞

1 1

1

0

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

3

1
1 1

1

Visit a neighbor based on order added to visit list
(Most recent for DFS)

0

1

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1Mark this node as visited 1

Visit a neighbor based on order added to visit list
(Most recent for DFS)

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

11

Repeat:
Add neighbor nodes to “visit list”

and note order added

4 3

5

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

5

Repeat:
For each neighbor:

 choose parent node that minimizes path distance back to start
AND store this distance (ϵ +) at the neighbor node

1

1

2

22

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

X

2 2

Repeat:
Visit a neighbor based on order added to visit list

and mark as visited

1

2

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

2 2

Continue to next visit iteration

1

2
X6 5

7

3 3

3

2

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

2 21

2
XX6 5

7

3 3

3

2

if neighbor location is in collision,
do not add to visit list

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

2 21

2
XX6 5

3 32

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 32

continue to next iteration

6
4 3

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 32

2

2

6
4

2

3

do not add neighbors if they are in collision
or have already been visited or queued

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 32

continue to next iteration

X
4 3

6
5

7
5 4

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 32

continue to next iteration

X
4 3

6
5

X
5 4

7
6

8
6 5

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 32

continue to next iteration

X
4 3

6
5

7
6

8
7

X
5 4

X
6 5

9
7 6

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 32

continue to next iteration

6
5

7
6

8
7

X
4 3

X
5 4

X
6 57 6

X10

9

11

8

8

8

7

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 32

continue to next iteration

X
4 3

6
5

7
6

8
7

X
5 4

X
6 57 6

X10

9

X

8

8

8

7

11

12

9

9

8

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 32

continue to next iteration

X
4 3

6
5

7
6

8
7

X
5 4

X
6 57 6

X10

9

X

8

8

8

7

11

X

9

9

8

12

13

10

10

9

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 32
X

4 3

goal node now in visit list
and will be visited next

6
5

X
5 4

7
6

8
7

X
6 57 6

X10

9

X

8

8

8

7

11

X

9

9

8

12

X

10

10

9

13
11 10

http://autorob.org

Michigan Robotics 367/320 - autorob.org

CS1480 – Assignment 3 Path Planning

• Potential fields (Choset Ch. 4) and Wavefront planning3

• Probablistic roadmaps [1] (Kavraki et al. 1996)

• RRT-Connect [2] (Ku�ner et al. 2000)

There is pseudocode available for Dijkstra’s and A* search on Wikipedia as well as many other sources.
There are many verisons of Dijkstra’s and A* available on the internet, you are free to use these just be sure
to cite anything that is not your own.

4 Physical Soccer Environment

Figure 1: Coarse dimensions of the “FC 148” field in
centimeters.

Shown in Figure 2, the course sta� has set up the
“FC 148” robot soccer field within the Roomba
Lab for this assignment’s games and individ-
ual challenges. The dimensions of this field are
roughly 3.8m in width and 2.6m in height, as
coarsely illustrated in Figure 1 4. The field’s ori-
gin (0, 0) is in the corner opposite the desk with
the lab computers. The direction a robot is fac-
ing (yaw, or �) is defined in radians and 0 if the
robot is facing the wall opposite the desk with the
lab computers. Turning to the right increases the
angle of yaw until ⇥, turning to the left decreases
the angle of yaw until �⇥. That is, as the robot
turns to the right the angle of yaw increases to-
wards ⇥ until the robot is facing the wall with the
desk. If the robot turns even more the angle will
not increase up to 2⇥ but rather start decreasing
from �⇥. The collective field of view for these cameras is shown in Figure 2. Localization for these robots
within the field of view is handled by a client-server based application written by the course sta�. How to
incorporate such localization information in your client program is explained in the next section. The goals
are roughly 0.7m in width and slightly extend past the end boundary. A goal will consider being scored if
the ball touches the goal material.

4.1 Localization Interface

4.1.1 Infrastructure

As mentioned above, a total of four cameras were installed on the ceiling. The cameras labeled 1 and 2 are
connected to the computer sandworm and the ones labeled 3 and 4 are connected to foxwood. The course
sta� wrote a program called tdlocc (Top-Down Localization Client) that connects to a specific camera and
analyzes the pictures taken by it. That is, it does two things: First, it uses the ARToolkitPlus library to find
the robots with the black and white pattern on top of it and estimate their location and bearing. Second, it
uses the CMVision library to find the yellow ball and determine its position. It then constructs a data packet
which contains pose estimates on all the objects it has spotted and sends it to the localization server over
the network using UDP. tdlocc repeats this process several times a second and thus delivers up-to-date pose
information to the server. The localization server program, called tdlocs (Top-Down Localization Server),
listens on network port 8855 for incoming pose estimates from localization clients and fuses those estimates

3http://playerstage.sourceforge.net/doc/Player-2.0.0/player/classPlayerCc 1 1PlannerProxy.html
4The actual dimensions of the field vary slightly from these dimensions due to issues with ceiling mounting of the cameras.

2

Depth-first search

2

X

1
01 1

1
4 3

2 21

2
XX 5

3 32
X

4 3

Path found when goal node visited

6
5

X
5 4

7
6

8
7

X
6 57 6

X10

9

X

8

8

8

7

11

X

9

9

8

12

X

10

10

9

X
11 1011

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Let’s turn this idea into code

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distStraightLine(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distStraightLine(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance start

∞

∞

∞

∞
0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

goal∞

start

goal

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distStraightLine(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distStraightLine(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

Initialization
- each node has a distance and a parent
 distance: distance along route from start
 parent: routing from node to start

- visit a chosen start node first
- all other nodes are unvisited and have high distance

start

∞

∞

∞

∞
0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

goal∞

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distStraightLine(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distStraightLine(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

Main Loop
- visits every node to compute its distance and parent
- at each iteration:

- select the node to visit based on its priority
- remove current node from visit_list

start

∞

∞

∞

∞
0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

goal∞

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distStraightLine(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distStraightLine(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance start

∞

∞

∞

∞
0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

goal∞

For each iteration on a single node
- add all unvisited neighbors of the node to the visit list
- assign node as a parent to a neighbor, if it creates a shorter route

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance start

∞

∞

∞

∞
0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

goal∞

Output the resulting routing and path distance at each node

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Depth-first search

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

∞

∞

∞

∞

∞

0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Depth-first search
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_stack ← start_node

while visit_stack != empty && current_node != goal
 cur_node ← pop(visit_stack)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 push(nbr to visit_stack)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

Priority:
Most recent

∞

∞

∞

∞

∞

0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Stack data structure
A stack is a “last in, first out” (or LIFO) structure, with two operations:

push: to add an element to the top of the stack

pop: to remove and element from the top of the stack

Stack example for reversing
the order of six elements

Push
Push

Push
Push

Push

Pop
Pop

Pop
Pop

Pop

http://autorob.org

Michigan Robotics 367/320 - autorob.org

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Breadth-first search

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

∞

∞

∞

∞

∞

0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Breadth-first search
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← dequeue(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 enqueue(nbr to visit_queue)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

Priority:
Least recent

∞

∞

∞

∞

∞

0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Queue data structure
A queue is a “first in, first out” (or FIFO) structure, with two operations

enqueue: to add an element to the back of the stack

dequeue: to remove an element from the front of the stack

http://autorob.org

Michigan Robotics 367/320 - autorob.org

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Dijkstra’s algorithm

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Search algorithm template
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_list ← start_node

while visit_list != empty && current_node != goal
 cur_node ← highestPriority(visit_list)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 add(nbr to visit_list)
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 end if
 end for loop
end while loop

output ← parent, distance

∞

∞

∞

∞

∞

0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

Priority:
Minimum route distance

from start

∞

∞

∞

∞

∞

0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

Dijkstra walkthrough

∞

∞

∞

∞

∞

0 ∞

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

∞ > 0+5

∞ > 0+8
current_node

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

5

∞

∞

∞

∞

0 8

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

∞ > 5+1

8 > 5+2

∞ > 5+6

Dijkstra walkthrough

current_node

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

11

∞

∞

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal
∞ > 6+4

11 > 6+3

Dijkstra walkthrough

current_node

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

∞

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

∞ > 7+3

9 !> 7+3

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal
10 !> 9+5

10 !> 9+2

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

10 !> 10+2

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

empty queue

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

What will search with Dijkstra’s
algorithm look like in this case?

http://autorob.org

Michigan Robotics 367/320 - autorob.org

What will search with Dijkstra’s
algorithm look like in this case?

http://autorob.org

Michigan Robotics 367/320 - autorob.org

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Dijkstra BFS

Why does their visit pattern look similar?

http://autorob.org

Michigan Robotics 367/320 - autorob.org

A-star Algorithm

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Hart, Nilsson, and Raphael

IEEE Transactions of System Science and Cybernetics, 4(2):100-107, 1968

http://autorob.org

Michigan Robotics 367/510/567 - autorob.org

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

Dijkstra shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while visit_queue != empty && current_node != goal
 cur_node ← min_distance(visit_queue)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

empty

queue

http://autorob.org

Michigan Robotics 367/320 - autorob.org

A-star shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while (visit_queue != empty) && current_node != goal
 cur_node ← dequeue(visit_queue, f_score)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 f_score ← distancenbr + line_distancenbr,goal

 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

empty

queue

http://autorob.org

Michigan Robotics 367/320 - autorob.org

A-star shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while (visit_queue != empty) && current_node != goal
 cur_node ← dequeue(visit_queue, f_score)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 f_score ← distancenbr + line_distancenbr,goal

 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

empty

queue

g_score: distance
along current path

back to start

h_score:

best possible
distance to goal

priority queue wrt. f_score
(implement min binary heap)

http://autorob.org

Michigan Robotics 367/320 - autorob.org

A-star shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while (visit_queue != empty) && current_node != goal
 cur_node ← dequeue(visit_queue, f_score)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 f_score ← distancenbr + line_distancenbr,goal

 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

g_score: distance
along current path

back to start

h_score:

best possible
distance to goal

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

empty

queue

priority queue wrt. f_score
(implement min binary heap)

Why is A-star advantageous?

http://autorob.org

Michigan Robotics 367/320 - autorob.org

http://autorob.org

Michigan Robotics 367/320 - autorob.org

A-Star Dijkstra

How can A-star visit few nodes?

http://autorob.org

Michigan Robotics 367/320 - autorob.org

A-Star uses an admissible heuristic to

estimate the cost to goal from a node

How can A-star visit few nodes?

http://autorob.org

Michigan Robotics 367/320 - autorob.org

The straight line h_score is an admissible and
consistent heuristic function.

A heuristic function is admissible if it never
overestimates the cost of reaching the goal.

Thus, h_score(x) is less than or equal to the
lowest possible cost from current location to
the goal.

A heuristic function is consistent if obeys the
triangle inequality

Thus, h_score(x) is less than or equal to
cost(x,action,x’) + h_score(x’)

g

h

true cost to goal
x

http://autorob.org

Michigan Robotics 367/320 - autorob.org

https://www.cs.cmu.edu/~./awm/tutorials/astar08.pdf

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Heaps and Priority Queues

http://autorob.org

Michigan Robotics 367/320 - autorob.org

A-star shortest path algorithm
all nodes ← {diststart← infinity, parentstart ← none, visitedstart ← false}
start_node ← {diststart← 0, parentstart ← none, visitedstart ← true}
visit_queue ← start_node

while (visit_queue != empty) && current_node != goal
 cur_node ← dequeue(visit_queue, f_score)
 visitedcur_node ← true
 for each nbr in not_visited(adjacent(cur_node))
 if distnbr > distcur_node + distance(nbr,cur_node)
 parentnbr ← current_node
 distnbr ← distcur_node + distance(nbr,cur_node)
 f_score ← distancenbr + line_distancenbr,goal

 enqueue(nbr to visit_queue)
 end if
 end for loop
end while loop

output ← parent, distance

5

6

9

10

10

0 7

4

5

4

5

8

2
2

1
6

3

3
3

start

goal

empty

queue

min binary heap
for priority queue

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Binary Heaps
A heap is a tree-based data structure satisfying the heap property:

every element is greater (or less) than its children

max heap min heap

Binary heaps allow nodes to have up to 2 children

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Heaps as arrays

• Heap element at array location i has

• children at array locations 2i+1 and 2i+2

• parent at floor((i-1)/2)

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Heap array example

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Heap array example

http://autorob.org

Michigan Robotics 367/320 - autorob.org

How do we insert a

new heap element?

http://autorob.org

Michigan Robotics 367/320 - autorob.org

New element

Heap operations: Insert
Current heap

http://autorob.org

Michigan Robotics 367/320 - autorob.org

New element

Heap operations: Insert
Current heap

1) add new element to end of treeStep

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Heap operations: Insert
Current heap

1) add new element to end of treeStep

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Heap operations: Insert
1) add new element to end of tree 2) if heap condition not satisfied,

swap inserted node with parent

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Heap operations: Insert
1) add new element to end of tree

3) until heap condition

satisfied, repeat (2)

For priority queue, previously non-queued
locations will be inserted with f_score priority

2) if heap condition not satisfied,

swap inserted node with parent

http://autorob.org

Michigan Robotics 367/320 - autorob.org

What happens when we

extract a heap element?

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Heap operations: Extract
1) extract root element

For priority queue, the root of the heap
will be the next node to visit

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Heap operations: Extract
1) extract root element

For priority queue, the root of the heap
will be the next node to visit

X

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Heap operations: Extract

1) extract root element

For priority queue, the root of the heap
will be the next node to visit

X

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Heap operations: Extract

1) extract root element 2) put last element at root
X

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Heap operations: Extract

2) put last element at root

3) swap with higher

priority child

4) until heaped, do (3)

For priority queue, the root of the heap
will be the next node to visit

1) extract root element
X

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Considerations
• How many operations are needed for heap insertion and extraction?

• How much better is a min heap than an array wrt. # of operations?

• Can there be duplicate heap elements for the same robot pose?

• How should we measure distance on a uniform grid?

• Is a choice of distance measure both metric and admissible?

https://lyfat.wordpress.com/2012/05/22/euclidean-vs-chebyshev-vs-manhattan-distance/

http://autorob.org

Michigan Robotics 367/320 - autorob.org

Project 1:

2D Path Planning
• A-star algorithm for search

in a given 2D world

• Heap data structure for
priority queue

• Implement in JavaScript/
HTML5 (next lecture)

• Submit through your git
repository

Start

Goal

http://autorob.org

<html>
<title>How do we implement this planner?</title>

<body>
<h1>Next lecture:</h1>
<p>JavaScript/HTML5 and git Tutorial</p>

EECS 367 Introduction to Autonomous Robotics

ROB 320 Robot Operating Systems

</body>
</html>

http://autorob.org

